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Abstract-A regular two-parameter perturbation analysis is presented here to study the effects of both 
viscous dissipation and pressure stress on natural convection flows. Four different vertical flows have been 
analyzed, those adjacent to an isothermal surface and uniform heat flux surface, a plane plume and flow 
generated from a horizontal line energy source on a vertical adiabatic surface, or wall-plume. For high 
gravity levels, stress work effects may be important for gases at very low temperatures, and for high Prandtl 
number liquids. Significant changes in heat transfer and flow quantities are observed even at moderate values 
of the perturbation parameters. For the entire range of Prandtl number values considered, the viscous 
dissipation term is seen to inhibit heat transfer from the surface for heated upward flows. The pressure term 
enhances heat transfer from the surface for lower Prandtl numbers. However, this effect is seen to reverse at Pr 
= 100, for both the isothermal and uniform flux surfaces. It is observed that viscous dissipation effects on 
heat transfer are much smaller than those due to the pressure stress, for many practical circumstances. 
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NOMENCLATURE 

defined in equations (2a)-(2c); 
specific heat of fluid; 
nondimensional stream function ; 
local Grashof number in the absence of 
viscous dissipation and the pressure term 

= SBx3(L-tl)0/V2; 
actual local Grashof number = 

&‘(L - t, )/v’ ; 
acceleration due to gravity; 

local heat transfer coefficient; 
thermal conductivity of fluid ; 
momentum flux in the x-direction ; 
mass flow rate per unit width of surface; 
defined in equations (2a)-(2c); 

local Nusselt number, = hx/k ; 
heat transfer parameter, 
= J(2) Nu,/(Gr,)’ I4 ; 
total heat convected downstream; 
surface heat flux ; 
film temperature at which all the fluid 

properties are calculated; 
temperature ; 
vertical velocity component; 
horizontal velocity component ; 
vertical coordinate ; 
horizontal coordinate. 

Greek symbols 

P. coefficient of thermal expansion ; 
6% perturbation parameter characterizing 

viscous dissipation, =g/?x/C, ; 

* This work was performed when the authors were at the 
State University ofNew York at Buffalo, Amherst, NY 14260, 
U.S.A. 

perturbation parameter characterizing 

pressure stress work, = (gbx/C,) T/At 

nondimensional horizontal distance; 
kinematic viscosity of fluid ; 
density ; 
temperature excess ratio, 

= (t-t,)l(t,--t,); 
stream function; 
shear stress. 

Subscripts 

0 refers to conditions at x=0; 

x_, refers to conditions in ambient fluid; 

0, refers to conditions when 7. and x are zero. 

IKTRODL’CTION 

IN ALMOST all natural convection studies, the viscous 
dissipation and pressure stress terms are neglected in 
the energy equation. This is a valid approximation at 

an ambient temperature of 300 K at 1 atm pressure 
and at terrestrial gravity, for most gases and low and 
moderate Prandtl number liquids. However for high 

gravity, such as in gas turbine blade cooling appli- 
cations, where the intensity of the body force may be as 
large as lo4 g, viscous dissipation and pressure stress 
effects may affect transport even at small downstream 
distances from the leading edge. Also, the effects on 
transport may be quite significant at low temperatures 
for gases and for high Prandtl number liquids. 

Gebhart [l] analyzed the effects of viscous 
dissipation only, using a regular perturbation analysis. 
All the previous studies concerning viscous dissipation 
in natural convection were summarized. The effect of 
viscous dissipation is obtained in terms of the quantity 
gBxJc,. A fifth-order coupled set of ordinary 
differential equations is obtained for the first-order 
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corrections in velocity and temperature, due to the 
viscous dissipation effect. Solutions were obtained for 
various Prandtl numbers ranging from 10e2 to 104. 

Gebhart and Mollendorf [2] consider viscous 
dissipation effects for an exponentially varying surface 
temperature. The appropriate parameter for viscous 
dissipation here was obtained as gj/mc, where m is the 

e-folding distance for the surface temperature 
variation. A similar set of equations was obtained for 
the nondimensional velocity and temperature. The 
solutions were obtained for various Prandtl numbers. 
The effect of viscous dissipation on transport was seen 
to increase with Prandtl number. 

Roy generalized the isothermal [3] and uniform 
surface heat flux [4] results of Gebhart for the case of 

asymptotically large Prandtl number. In another note 
[5] Roy also generalized the results of Gebhart and 
Mollendorf, for asymptotically large Prandtl number. 
Soundalgekar [6] considered viscous dissipation 

effects on unsteady natural convection flow past an 

infinite vertical porous plate with constant suction. 
Soundalgekar and Pop [7] considered the same 
problem with non-uniform suction. In follow-up 
papers [S-12] the viscous dissipation term was 

retained in the energy equation, for several kinds of 
transient natural convection. In [13] Soundalgekar 
considered the effect of mass transfer on free convective 
flow of an incompressible, dissipative, viscous fluid 

past an infinite vertical porous plate with constant 

suction. Effects of viscous dissipation and pressure 
stress work on mixed convection flow were studied by 
Soundalgekar and Takhar [14]. The local similarity 
approach was followed and quasi-ordinary differential 

equations were obtained for the nondimensional 
velocity and temperature. These were numerically 
solved. 

Kuiken [15] was the first to consider the effect of 
pressure stress work in natural convection in gases. 

The viscous dissipation effect was neglected, however. 
The set of equations was solved for the case of surface 
temperature linearly varying with x, for which a 

similar solution exists. The possible importance of 
including pressure stress work in plume flow analysis, 
to describe the outer regions of the plume where the 
value of (t, - t ,) is very small, was pointed out. 

Ackroyd [16] analyzed stress work and viscous 
dissipation effects in laminar flat plate natural 
convection. It was established that pressure work 

effects are generally more important both for gases 
and liquids. Property variations within the boundary 
layer and also outside the boundary layer were consid- 
ered. Two different kinds of ambient medium prop- 
erty conditions were considered, a constant temper- 
ature fluid and isentropic stratification. The surface 
temperature variations in the two conditions were, 
t&x)-t , (x)=constant and t, =constant, re- 

spectively (see the notation). Expansions were made 
in terms of a perturbation parameter based upon 
c,/gfl-the length scale for the viscous dissipation 
term. However, as we shall see later, the possible x 

dependence of At gives rise in general, to a different 
length scale for the pressure stress work term. 
Perturbation solutions were obtained for the 
nondimensionalized temperature and velocity 
functions. 

Turcotte et al. [17] have considered the effect of 

viscous dissipation on Benard convection. Hewitt, 
McKenzie and Weiss [lg] examined the energetics of 

convection in a compressible fluid. They refer to 
models of convection in the earth’s mantle and 
establish an upper bound to the rate of ohmic heating 
in the earth’s core. 

Brown [19], in an integral analysis, examines the 

relative magnitude of viscous dissipation and pressure 
stress effects in natural convection over an isothermal 
vertical flat plate. The von-Karman approximate 

integral technique has been used with constant fluid 
properties, both within and out of the boundary layer. 
Because of a sign error in the substitution for dp/dx, 
both the pressure stress term and viscous dissipation 

were found to decrease heat transfer, for heated 
upward flows. 

Gray and Giorgini [20] discuss the validity of the 

Boussinesq approximation for liquids and gases. 
Allowance is made for the variation of all properties 
with temperature and pressure and the explicit ranges 
where the Boussinesq approximation is valid are found. 
The fluid properties p, cpr p, fl, and k are assumed linear 
functions of temperature and pressure. These 

approximations are substituted into the full set of 
equations, which are then nondimensionalized. A set 
of conditions is obtained, for the Boussinesq 
approximation to be valid. The following two 
additional conditions are put on the length and 
temperature difference scales, to justify omitting the 
effects of viscous dissipation and pressure stress work 
in the energy equation, respectively 

and 

where the subscript o implies some reference state and 

L is the length scale. Examples have been given for 
water and air, at T, = 15°C and P, = 1 atm. It has 

been shown that the pressure stress term cannot be 
neglected in many circumstances. A low value of Ar 
will make this effect quite important. The viscous 
dissipation effect is almost always unimportant for 
water. For air however, it can be inferred that, at low 
temperatures of 50 K or so, the viscous dissipation 
effects must be included. The effects arise at large 
values of x for the terrestrial intensity of gravity. Also, 
it may be argued from the second condition above, that 
for liquids with higher Prandtl numbers than water, 
viscous dissipation may have to be considered. From 
[20] it can be concluded that for gases at very low 
reference temperatures and also for high Prandtl 
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number liquids, the viscous dissipation and pressure 
stress effects can actually become more important than 
the fluid property variations, both within the 
boundary layer and in the exterior fluid. The 
Boussinesq approximations can be invoked then. 
Clearly, for high values of g, such as in rotating 
systems, both the viscous dissipation and pressure 
stress effects will be important even at lower values 
of x. 

The following analysis appiies particularly to gases 
at low temperature levels and to high Prandtl number 
liquids. Constant fluid properties within the boundary 
layer and in the ambient medium have been assumed. 
The Boussinesq approximations have been used. Two 
different perturbation parameters arise-s for the 
viscous dissipation effect and i, for the pressure stress 
term effect. The equations are determined for a power 
law variation of the surface temperature. Results have 
been obtained for four representative kinds of 
downstream temperature variation. These are-an 
isothermal surface, a surface dissipating constant heat 
flux, a plane plume arising from a concentrated 
horizontal thermal source and an adiabatic surface 
with a concentrated energy source along the leading 
edge. The only differences in the formulation for the 
above four circumstances arise in the boundary 
conditions and in the coefficients in the relevant 
differential equations. Expressions for the heat transfer 
and drag quantities have been found. The results have 
been obtained for the Prandtl number values of 0.733, 
10, and 100. 

FORiMULATION 

This formulation assumes steady, two-dimensional 

(plane) vertical natural convection flow and 
incorporates the Boussinesq and boundary layer 
assumptions. The fluid properties are assumed to be 
constant, as evaluated at some reference temperature. 
Viscous dissipation and the hydrostatic pressure terms 
have been retained in the energy equation. Externally 
imposed volumetric energy sources are assumed 
absent. This results in the following governing 
equations (see for example [21]): 

(la) 

au au a% 
“ax + 0% = “ay” + sP(t-t,) 

where x is taken to be in the direction of the flow i.e. 
vertically up from the active leading edge for heated 
upward flows and vertically down for cooled 
downward flows. The temperature of quiescent 
ambient fluid, t,, at large values of y, is taken to be 
constant. 

The following generalizations are introduced to 

obtain the equations in terms of generalized stream 
and temperature functions f and 4 

r(x, Y) = YW),J/ = "4xhfbL xl (24 

t-t,, 
MLx) = (to-t&’ 

___ (t,-t,)o = d(x) = Nx” (2b) 

@x3@, - tm)o 1 1’4 
c(x) = 4x&x) = 4 

4v= 

=4 !$Z 
i 1 

1.14 

(2c) 

where (t,--~)~ is the downstream temperature 
difference (along the x-axis) which would result 
without the inclusion of the viscous dissipation and 
hydrostatic pressure effects, that is for both c: and ). 
zero. Gr, is related to the actual physical local Grashof 
number Grk by Gr: = Gr,&O). 

Expansions for the stream and temperature 
functionsf(rj, x) and $(g, x) are postulated as: 

f(s x) =fo(?)+s(x)fr(Y) + &)F,(?) + [W]W?) 

+ [i.(x)]*F,(~) + a(x) L(x)G&) + . . . (3) 

cp(% x) 
= #A?) + s(x)&r(tl) + W@,(?)+Ea(X)]2 (P&I) 

-t [~Jx,]‘@~(~) + c(x)i,(x)T,(q) + . . . (4) 

To retain both the viscous dissipation and 
hydrostatic pressure effects to the first order, E(X) and 
i.(x) are chosen as 

wx 
E(X) = __ 

CP 

WT I_,, 
l.(x) = NeX . 

P 

(54 

(5bf 

The choice of c(x) is the same as made by Gebhart [l]. 
The quantity I.(x) is due to the hydrostatic pressure 
effect. Note that i, is a constant for n = 1. The two 
quantities are seen to be simply related as 

T 
A(x) = c(x)d(l) . WI 

For most practical circumstances T/d(x) is large or at 
least O(1). Hence 3.(x) may not be neglected in an 
investigation of the effect of c(x). From 5(a) and (b), x 
may be eliminated to obtain 

for heated upward flows. For cooled flows, in the 
downward direction, the pressure stress causes 
compression and hence heating of the fluid for /I > 0. 
This augments heat transfer from the surface. Viscous 
dissipation also acts to increase heat transfer from 
surface. Hence in (5d), i, is always positive. However, f: 
has to be replaced by -8, for cooled downward flows. 
The formulation remains the same except that N is 
replaced by - N and g by -g. 
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Here we consider terms only up to and including the 
first order. The expansions forfand 4 are truncated 
after the first order and i. and c are treated as separate 
parameters. This has been done to study the inde- 
pendent effect of each parameter on the velocity and 
temperature fields. Greater accuracy for specific cir- 
cumstances may be obtained by retaining higher order 
terms in (3) and (4). When higher orders terms must be 
considered, it is convenient to substitute (5d) into (3) 
and (4), to eliminate c(x) in favor of i*(x). Depending 
upon the particular choice of n, (3) and (4) can then be 
arranged in ascending powers of of 1.. 

Substituting (3) and (4), into (lb) and (lc), with the 
generalizations in (2), the equations for&, &,fi, $r, F, 
and @, are determined for any value of n 

fy - 2(n + l)fb’ + (n + 3)&f,” + 4, = 0 (6a) 

&’ + Pr[(n+3)fo&, -4nfb&] = 0 (6b) 

f;” + (n + 7X% + (n + 3)Lf’; 

- 4(n+ 2)fhf; + 41 = 0 (7a) 

4; + Pr[(n + 7)fiK + (n + 3)f,#i 

- 4(n+ l)fb 4r - 4nf; 4,, + (f:)‘] = 0 (7b) 

F;” + (7-3n)fb’Fi + (n+3)_@‘;-8&F;+ @i =0 

(8a) 
a; + Pr[(7- 3n) F,& + (n + 3)f, 0; - 4fb @i 

- 4n F; 4, -j-b] = 0. (8b) 

Equations (7a) and (7b) are the same as presented in 
the Appendix of [2]. A sign error in (7b), which arose in 
the earlier work, has been corrected. 

The relevant boundary conditions, or imposed 
conditions at y = 0 and as y --f YL, are as follows. The 
primes indicate differentiation with respect to r~. 

The boundary conditions for the zeroth-order 
equations are taken to be those that would arise in the 
absence of viscous dissipation and pressure stress 
effects. The boundary conditions for the first order 
terms are then found by imposing reasonable require- 
ments on the velocity and temperature functions 

fand 4, and their derivatives at q =0 and at q+ X. 
(a) Isothermal surface with horizontal leading edge 

j-b(O) =“fi(O) = F;(O) =fe(O) =f,(O) = F,(O) = 0 

f;(L) =fi(-/) = F;(Z) = 0 

l-&(O) = 41(O) = @r(O) = 0 

(b,(Z) = r$i(%) = @i(Z) = 0. 

(b) Constant flux surface with horizontal leading 
edge 

f:(o) =fi(O) = F;(O) =h(O) =fl(0) = F,(O) = 0 

f;(X) =f;(cL) = F;(Z) = 0 

1 - 4,(O) = f&(O) = WI(O) = 0 

(PO(X) = &(%) = (D1(%) = 0. 

(c) Unbounded plane plume, rising from a horizon- 
tal thermal source at x = 0 

h(O) =fl(0) = F,(O) =fi(O) =fY(O) = F;‘(O) = 0 

f;(x)) =fi(-/-) = F;(%) = 0 

l-&(O) = f#&(O) = 4;(o) = WI(O) = 0 

f#Jr(%) = Or(%) = 0. 

(d) Adiabatic surface with a concentrated heat 
source along the horizontal leading edge, a wall plume 

fO(0) =fr(O) = F,(O) =fb(O) =fi(O) = F;(O) = 0 

f;(T) =fi(-/-) = F;(z) = 0 

l-&(O) = &(O) = &(O) = WI(O) = 0 

&(r/-) = @i(X) = 0. 

The value of n in (2b), d = (t, - t, ). = Nx”, depends 
only on the zeroth-order solution. For the isothermal 
condition n = 0, and, therefore, (t,--t,)e is given. 
Thus, the 4i(O), 42(O), . and @r(O), m*(O), are all 
zero and the temperature at y = 0 does not depend on 
E(X) and R(x). The values of n for the other three flow 
conditions are determined by calculating the value of 
Qe(x), the total heat convected in the flow at any 
downstream location x, considering only zeroth-order 
terms. 

The energy equation (lc), in the absence of viscous 
dissipation and pressure stress terms, is integrated at a 
given x to give 

I 

7 

.I* 

X 
Qob) = pc,uo(t - t-, )o dy = q; dx. 

0 0 

The subscript 0 emphasizes that viscous dissipation 
and pressure stress effects are not being considered. 

Using generalizations in (2), (3) and (4) 

Qo(x) = j; pc,uo(t - t, ). dy = pvc,cd 
c 

’ (Pofbda 
0 

x x(3+5n).4 

Qo(x) must increase linearly with x for the imposed 
uniform surface heat flux condition (b). It must be 
independent of x for the adiabatic flows, (c) and (d). 
Therefore, 

n, = 0 Pa) 

nb = l/S (9b) 

n, = nd = -315. (9c) 

The effects of viscous dissipation and the pressure 
terms act to generate thermal energy in the flow field. 
Even in the plume flows, the total convected energy 
does change downstream of x = 0. Including the 
zeroth- and first-order terms, Q(x) is, in general 

Q(x) = pvc,cd 
[.I 

1o bfbds++) 
0 

X 
s 
om (fbb+f; A)h+4x) 

s 

x. 
X (fb@~+F;rb,)dv . 1 (10) 

0 
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The second and third integrals in (10) represent the 

energy contributions of the viscous dissipation and the 

pressure terms, respectively, to the total convected 

energy at location x. The dissipation term in the energy 
equation (10) is a volumetric source term. The pressure 
term occurs as a volumetric sink term since dp,/dx = 
- pg, for upward, or heated flows. By integrating the 
first order energy equations (7b) and (8b) at any x, for 
conditions b, c, and d, the last two integrals in (10) are 
evaluated and Q(x) is again written 

s I 

I, = 
L1 0 

(fb 41 +f; 4,) dv = & s ox (f:12 dq 

(11) 

Q(x) = ~vc,c4~~,, + c(x) I,, + i(x) I~,] (13) 

where 

IQ = s T 4ofb dq. 
Y 0 

The local total downstream mass flow rate, per unit 
width, is 

k= 
s 

x pudy = vpc~o(-/)+i:(x)fi(-/-)+3.(x)F,(x)]. 
0 

(14) 

The local x-direction momentum flux is given by 

J* 
CX M(x) = pu2 dy = pv2c2b 

I 
,’ (f’)’ dr? 

0 

where 

= &%[lM 
” 

+ L(X) I,, +2(x) IM2 

(15) 

I 

1 

7 I, = ” 
0 

(fb)2 drl, I,! = 
s 

2fzfbf; drl 
0 

and 

s 1 

r = 
Ml 2f b F, dr?. 

0 

From (Sa) and (Sb) it is seen that c(x) is a function of 
x for all values of n, as is i.(x) for n # 1, which 

corresponds to a linearly varying surface temperature. 
For all the surface conditions considered here, the 
coordinate expansions (3) and (4) apply. For all four 
conditions, the exponent of x is equal to or greater than 
zero in all terms in (5a) and (5b). Hence both 
expansions are valid for small x. Also, the effect of both 
the viscous dissipation and pressure terms increases 
with increasing x. 

For surface conditions in (a), (b) and (d) above, the 
shear stress at the surface, retaining terms up to first 
order, is given by 

r(x) = pv2cb2 [f;(O)+C(x)f;(O)+L(x)F;(O)].(16) 

Also, the surface heat flux, q”(x), and local Nusselt 
number, Nux, are determined as 

‘f’ = -k d’ 
ay g=. = [-4Wl kdb 

= [4’(0)1 WY4 t18I 
-w J2 

where 

&O)=&(O)+ E(X) &(O)+W) r%(O)+. ” 
t-t, 

(to-tx)o 

and 

Gr; = Gr,~$(0). 

Defining N’ 

NuxJ2 = N’ 

o”4 
(18) is rewritten as 

N’ = [ - 4Wl 
TaiF. 

(194 

(19b) 

(20) 

CALCULATIONS 

The zeroth-order equations (6a) and (6b), with 
suitable boundary conditions and the appropriate 
value of n for conditions (a), (b) and (c) are written in 
terms of the formulation of Gebhart [21]. The zeroth 
order formulation for condition (d) is that of Jaluria 
and Gebhart [22]. This latter is the flow above a 
horizontal line source on an adiabatic vertical surface. 

Equations (6a) through (8b), with the relevant 

boundary conditions (a)-(d) were solved numerically 
for each of the four conditions in (a), (b), (c) and (d), for 
Pr = 0.733, 10 and 100. Hamming’s predictor cor- 
rector scheme was used for integration. Initial guesses 

were corrected using a Taylor series expansion, evalu- 
ated at nedge, for the distant boundary conditions. 
The numerical integration scheme employed auto- 

matic local subdivision of the prescribed integration 
interval, to achieve the desired accuracy. An accuracy 
criterion of lo- lo was used on the distant boundary 
conditions. The value qedge was increased to as large as 

55 to ensure that all results were unvarying up to the 
fifth digit beyond the decimal point, with further 
increase in qCdge. The Prandtl numbers of0.733,10 and 
100 represent common gases and many liquids. 

RESULTS 

The numerical results of the perturbation analysis 
for the four conditions are collected in Table 1, for the 
three Prandtl number values. Figure 1 showsfb, bo, f ;, 
c$~, F;, and Or, for the isothermal surface condition (a), 
with Pr = 0.733. The correction function due to 
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viscous dissipation is seen to be smaller in magnitude 
than that due to the pressure stress term. Also, it does 

not extend as far out into the boundary region. The 

governing equations, forfi and c#J~, and the boundary 

conditions for this condition, are the same as in 
Gebhart’s [l] analysis for viscous dissipation. How- 
ever, for these latter solutions, the approximation 
= 0 was made to simplify the calculations. This 
eliminates equation (7a) completely. Further, in (7b) 
two terms drop out, making it simpler to solve. The 

resulting value for 4;(O) is 5% different from the more 
accurate results obtained here, for Pr = 100. None of 

the other Prandtl number values used here are com- 
mon to both analyses. 

It is seen in Table 1 that, for both Pr = 0.733 and 

10, WI(O) is negative. For heated upward flows this 
means that the pressure stress effect increases the heat 

transfer from the surface. However, this effect is 
reversed at Pr = 100. Looked at in another way, for Pr 

= 0.733 and 10, @I is negative over the boundary 
region and for Pr = 100 it is positive in the region 0 < 

q 5 0.5 and negative for q 2 0.5. Thus, the pressure 
term actually does inhibit heat transfer from the 
surface in a heated upward flow. This is explained as 
the effect of the simultaneous interplay of two factors; 
on the one hand, there is a downstream tendency of 
fluid cooling due to its expansion. On the other hand, 

there is a decrease in the heat convected, due to the 
reduction in the velocity level resulting from the re- 
duced buoyancy force. The latter effect becomes the 

dominant one near the surface, at higher Prandtl 

numbers. The pressure term then decreases surface 

heat transfer and actually causes relative local heating 
of the fluid. 

Figure 2 presents& &,f;, #I, F; and @,, for the 
uniform imposed flux condition, with Pr = 0.733. Here 

$I is greater in magnitude and extends out further 
than for the isothermal condition. However& and F’, 
are still small. A weak reversal in f; is observed for 

‘I 2 2. 
The effect of i. and I: on the heat transfer parameter 

N’ in (20), is shown in Fig. 3, for both the isothermal 
and uniform flux conditions, for [NI/T = 0.1. As 

explained later, physical considerations limit the per- 
missible values of i. and I: within a range. The region 
between A and A’ in Fig. 3 denotes the region of 
applicability of the present analysis. The viscous 

dissipation effect always generates frictional heat and 
acts as a source term, both for heated upflow or cooled 

downflow. The pressure stress term however becomes 

an energy source term for cooled downward flows, 
since dp,/dx > 0. The fluid is actually being com- 

pressed and thereby warmed. In (5b) the ratio g/N 
remains positive both for heated upflow and cooled 
downflow. Therefore, in Fig. 3, i. is always positive. 
Also, i: is positive for heated upflow and negative for 
cooled downflow, because of the change in the sign of 
g. The value of i. for given I: is obtained from (5d). For 
heated upflow (t, - t ~ ). = d > 0, N > 0. For cooled 
downflow N < 0. As mentioned earlier, x always 

0.8 

0.6 

+ 

0.4 

FIG. 1. Temperature and velocity functions for the isothermal condition (a) with Pr = 0.733, c#J,, I$~, Al,&,/;, 
and F;. 
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FG 2. Temperature and velocity functions for the uniform flux condition (b) with Pr = 0.733, +., d,, @,, fb, 

f;, and F; 
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FIG. 3. The effect of I: and i for various Prandtl numbers, on heat transfer for isothermal (- ) and uniform 
flux (---) surface. INl/r = 0.1 has been assumed for all the curves. The region between A and A’ gives the 

range of validity of results without encountering_f( x) < 0. 
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remains positive. Figure 3 indicates that, for Pr = 
0.733 and 10, increasing the value of e from 0 in either 
direction, increases N’ for both the isothermal and 
uniform flux condition. For example, for I: = 0.08, i, = 
0.8 and Pr = 10, N’ is seen to increase by 13.7% for 
isothermal surface and 8.6% for constant flux surface, 
over its value at c = 0. For Pr = 100 the trend in the 
variation of N’ changes, due to the change in sign of 
Q;(O) and O,(O) for the two surface conditions, 
respectively. 

Results in Table 1 indicate that the value of - F,(z) 
rises very sharply as Pr is increased. The boundary 
layer thickness 6(x) must increase with x, from 6 = 0 at 
the leading edge. For this to be true, fluid must be 
entrained from the ambient and v(x, -/-) < 0, which in 

the transformed variables implies thatf(Y-) > 0. The 

conditions forf( Z) > 0, for Pr = 100 and 1 N I/T = 0.1 
are calculated to be i. I 0.083 and i. 2 0.068, for the 

isothermal and uniform flux conditions for heated 

upflow. Thus, pressure stress effects become quite 
significant at high Prandtl number. Similar limits 
could be obtained for each Prandtl number and value 

of the parameter 1 N I/r. It is also noted that, since c is 

typically much smaller than 1, the pressure stress term 
influences heat transfer much more than does viscous 
dissipation. 

Figure 4 showsfb, &,f;, #or, F;, and 0, for the plane 

0.7r 

0.6 h 

plume with Pr = 0.733. Again, the correction due to 

the pressure term is greater than that due to dissi- 
pation. As for the uniform flux condition, there is a 

weak reversal inf; for q 2 2.25. Table 1 indicates that 
Q,,(O) is less for Pr = 100 than for Pr = 10. This is 
again attributed to the large decrease in velocity level, 

the decrease in the convected energy in the plume, for a 
higher Prandtl number. Nonzero values of i. and c 
produced significant changes in the velocity and 
temperature at the plume centerline. This is shown in 
Fig. 5. The effect of increasing Prandtl number on 
&J,(O), seen in Table 1, is a decrease. This trend is not 
observed for the other three conditions. 

The solutions for the wall plume are shown in Fig. 6, 
for Pr = 0.733. The values of 4r andf; are seen to be 

larger for this than for the previous three conditions. 
The importance of the presence of a surface, in making 
viscous dissipation appreciable, is seen by comparing 

the wall plume values of 4r(O), with that for an un- 
bounded plane plume (see Table 1). It is clear that 
the presence of the surface shear enhances the fric- 
tional heating effect considerably. The viscous dissi- 

pation corrections in this condition, are of the same 
magnitude as the corrections due to the pressure term. 
As for the uniform flux surface and the plane plume, a 
reversal in fi is observed for q 2 1.7. A very small 

reversal in F; is observed for 2.4 5 q 5 3. 

i.0 

0.8 

0.6 

9 
0.4 

FIG. 4. Temperature and velocity functions for the plane plume (c) with Pr = 0.733, $,,, +I, cDI,f&f;, and F;. 



1586 YWEP~DRA JOSHI and BENJAMIN GERHART 

0. 

0. 

0. 

f'(O) 

0. 

0. 

0. 

0 

Pr: 

7- 

6- 

5- 
-r 

4- 

3- 

z- 

.4-- 

- Pr = ,733 

I I I I, It I I II 
-1.0 -.8 -.4 0 .4 .8 4.0 

E/f0 

-_( 

-4 

1.2 

I.1 

‘.O#(O) 
0.9 

0.8 

0.7 

FIG. 5. The effect of 1, i: and Prandtl number on d(O) (upper curves) andS(0) (lower curves) for the plane 
plume. IN//T = 0.1 has been used. The effect of Z arises implicitly in the expression for 4(O). 
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FIG. 6. Temperature and velocity functions for the wall, plume (d) with Pr = 0.733, $,, 4,, (D,,f’,, and F;. 
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CONCLUSION 7. 

This analysis considers both the viscous dissipation 
and pressure stress work for various types of surface 

temperature variations, in a unified manner. For the 
case of high gravity, stress work effects may be 

important for gases at low temperatures and for high 
Prandtl number liquids. This analysis provides the 
correct estimate of heat transfer and fluid flow quan- 
tities for such circumstances. Four representative 
surface conditions have been considered. The effects 
have been studied for three different Prandtl numbers 
for each surface condition. Viscous dissipation and 

pressure stress effects have been retained as first order 
effects. The resulting three sets of coupled fifth-order 
ordinary differential equations have been solved 
numerically. It is observed that the pressure stress term 
has a much greater effect than viscous dissipation, on 
heat transfer, for all the four surface conditions 
analyzed. Significant effects on flow and heat transfer 
were found even for moderate values of I: and 1. These 

effects are seen to be greatest for the two plume flows. 
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EFFET DE LA PRESSION ET DE LA DISSIPATION VISQUEUSE DANS QUELQUES 
ECOULEMENTS DE CONVECTION NATURELLE 

Rcisumb-On prtsente une analyse de perturbation B deux parametres pour ktudier en m&me temps les effets 
de la dissipation visqueuse et de la pression sur la convection naturelle. On considl?re quatre icoulements 
verticaux, ceux adjacents B une surface isotherme et g une surface g flux uniforme, un panache plan, et un 
ecoulement issu d’une source d’6nergie liniaire horizontale sur une surface adiabatique verticale, ou panache 
pariCtal. Pour des niveaux de pesanteur BlevBs, l’effet du travail des tensions peut btre important pour les gaz & 
des temperatures tr&s basses et pour les liquides a grand nombre de Prandtl. On observe des changements 
sensibles dans le transfert de chaleur et les ddbits de fluide, meme $ des valeurs mod&es du paramitre de 
perturbation. Pour le domaine entier du nombre de Prandtl considbr6, le terme de dissipation visqueuse 
freine le transfert thermique i la surface, pour les tcoulements ascendants. Le terme de pression accroit le 
transfert thermique pour les nombres de Prandtl faibles. Neanmoins cet effet se renverse B Pr = 100, B la fois 
pour les surfaces isothermes ou g flux constant. On constate que I’etTet de la dissipation visqueuse sur le 

transfert thermique est plus faible que celui de la pression dans beaucoup de circonstances pratiques. 
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DER EINFLUSS DER DRUCKARBEIT UND DER VISKOSEN DISSIPATION 
AUF EINIGE NATURLICHE KONVEKTIONSSTRC)MUNGEN 

Zusammenfassung-Es wird hier eine regulare zweiparametrige Storungsanalyse dargestellt, urn den Einflub 
sowohl der viskosen Dissipation als such der Druckarbeit auf natiirliche Konvektionsstromungen zu 
untersuchen. Vier verschiedene senkrechte Stromungen werden untersucht, anliegende Stromungen an einer 
isothermen und an einer Fllche mit konstanter Warmestromdichte, eine ebene Auftriebsstromung und eine 
Stromung, die von einer waagerechten linienformigen Energiequelle an einer senkrechten adiabaten Wand 
ausgeht, eine sogenannte Wandauftriebsstromung. Bei hohen Werten der Schwerkraft ist die Druckarbeit fur 
Gase bei schr niedrigen Temperaturen und fur Fliissigkeiten mit groBen Prandtl-Zahlen von Bedeutung. 
Signifikante Anderungen der Warmetibertragung und der StromungsgroBen werden sogar bei mlhigen 
Werten des Storungsparameters beobachtet. Fur den gesamten Bereich der untersuchten Prandtl-Zahlen 
erkennt man, dab der viskose Dissipationsterm die Warmeiibertragung von der Wand bei beheizten 
Aufwartsstromungen behindert. Der Druckterm begiinstigt die Warmetibertragung von der Wand bei 
kleinen Prandtl-Zahlen. Es zeigt sich jedoch, dal3 sich dieser Effekt bei Pr = 100 umkehrt, und zwar sowohl 
bei isothermen Flkhen als such bei Fllchen mit konstanter Warmestromdichte. Es wird beobachtet. dab 
viskose Dissipationseinfliisse auf die Wirmeiibertragung in vielen praktischen Fallen sehr viel geringer als 

die Einfldsse der Druckarbeit sind. 

BJlMIlHME PA60TbI YllPYl-MX HAllPR)KEHMti M BF13KOti flMCCMIIAIJMM 
HA HEKOTOPblE TMllbl ECTECTBEHHOKOHBEKTMBHblX TEqEHMti 

Aaaurauna C~~oMombK)neyXllapaMeTpMqecKoro Merona Bo3MymeHHti wCcne;lyelcw fmUn,fMe sn3Koi? 

fliicctmaumi H HopMaabHblx Harlpn~eHG4 Ha eCTecTBeHHoKoHBeKTMBHoe TeqefrMe. ,Aua:1w~Mpye~cn 

seTb*pe Bwa BOCX~~R~MX ~IOTOKOB: y u3oTepbfwiecKofi Ilosepxt~oclw, y r~osepx~ocr~ c IIOCIOIIH- 

HblM TellnOBblM IIOTOKOM. ".lOCKaR CTpyR M nOrOK 07 rOpM3OHT:i;lbHO~O .l&,tieiiHOrO WCIO'1HHKI Iell.,a. 

paCllOnOWZHHOr0 Ha BepTHKanbHOti anna6arnseckoti IlOBepXHOCTtl. HJW BOCXO,ISUl&dH CTp,'" B6JIM3C1 

CTeHKM. np,, 6onbutsx 3Ha'1eHHIIX CM,-,bl TAW(eCTII p&Ori, H?iIlpREeHHfi MOxeT OKU3bIB~lb CyU,eCrBC,,- 

Hoe t3nwHHe Ha Te'ieHMe ra3oB rlpri 0qeHb HH~KHX Tehweparypax M wi3KoCreR C 60:lbmw VWC.IOM 

npaHaTnn. &ixe nprc He6onbluwx .waqeHMsx rlapaMeTpa B03MymeHHR ~a6:110natorCn 6o;lbui&ie wwe- 

Hemifi B WIOTHOCTH -rennoBoro ~OTOK~~ w Kaprwe TeYeHwR. nOKa3aHO. '110 B c:iysae tjarpeaawblx 

BOCXOflIIUIHX flOrOKOB BO BCeM flMallil30He pdCCMalpMBaeMblX 3Ha',eHm? '(MC!lLi npaH,TInn C;lLiLieMOe. 

O",,Cb,Ba,O",ee B!?3Ky,O UHCCH1121UMK). yWTb,BLieT BenW,H"y TeIlllOBOrO 110,OKil 01 ,,OBepXHOCTH. npl( 

6onee HA~KMX 3HaqeHm3x q~cna npaH)lTnH ,wB:letlMe oKa3blBaeT ~H~~~~CM~IIIIW~~IOUI~~ Bo3;leircrwe 

Ha TennonepeHoc OT IlOBepXHOCTH. Oi-waKO lips Pr = 100 ua6nro;laercs IlpOT~BOIlOnO2Wbli? ')++eK I 
KPK fins ssorepMwvecKMx. T~K H paaHoMepH0 tiarpeeae~blx r*oeepx~~oc~eii. HalineHo, 1110 B 60_lb- 

UlliHCTBe rl,IEdKTH',eCKM BalKHblX C.qyWeB B.lMIIHHe HOpMUbHblX H2Illpfl~eHHti H;i le,l,lO,lepeHOC HLiMHOFO 


